Diagnostics for Nonparametric Estimation in Space-Time Seismic Processes
نویسندگان
چکیده
In this paper we propose a nonparametric method, based on locally variable bandwidths kernel estimators, to describe the space-time variation of seismic activity of a region of Southern California. The flexible estimation approach is introduced together with a diagnostic method for space-time point process, based on the interpretation of some second-order statistics, to analyze the dependence structure of observed data and suggest directions for fit improvement. In this paper we review a diagnostic method for space-time point processes based on the interpretation of the transformed version of some second-order statistics. The method is useful to analyze dependence structures of observed data and suggests directions for fit improvement also when a more flexible estimator of the conditional intensity function is used, such as the kernel one. In particular locally variable bandwidths kernel estimators are used to describe space-time variations of seismic activity of a region of Southern California.
منابع مشابه
Recursive Kernel Estimation of the Conditional Intensity of Nonstationary Point Processes
This paper develops adaptive nonparametric methods for analyzing seismic data. Kernel smoothing techniques are suitable for space-time point processes; however, they must be adapted to deal with the nonstationarity of earthquakes. By this we mean changes in the spatial and temporal pattern of point occurrences. A class of recursive kernel density and regression estimators are proposed to study ...
متن کاملApplication of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملSuperoptimal Rate of Convergence in Nonparametric Estimation for Functional Valued Processes
We consider the nonparametric estimation of the generalised regression function for continuous time processes with irregular paths when the regressor takes values in a semimetric space. We establish the mean-square convergence of our estimator with the same superoptimal rate as when the regressor is real valued.
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کامل